Name \qquad Date \qquad
\qquad
14

Practice Problems

In your notebook, solve the following problems.

SECTION 14.1 THE PROPERTIES OF GASES

1. Using kinetic theory, explain why a tire is more likely to blow out during a trip in the summer than during one in the winter.
2. Use kinetic theory to explain why on a cold autumn morning a camper's air mattress may appear to be somewhat flatter than when it was blown up the afternoon before. Assume no leaks.

SECTION 14.2 THE GAS LAWS

1. The volume of a gas at 155.0 kPa changes from 22.0 L to 10.0 L . What is the new pressure if the temperature remains constant?
2. Is it possible for a balloon with an initial pressure of 200.0 kPa to naturally expand to four times its initial volume when the temperature remains constant and atmospheric pressure is 101.3 kPa ?
3. Exactly 10.0 L of O_{2} at $-25^{\circ} \mathrm{C}$ is heated to $100.0^{\circ} \mathrm{C}$. What is the new volume if the pressure is kept constant?
4. A gas at a pressure of 501 kPa and a temperature of $25^{\circ} \mathrm{C}$ occupies a volume of 5.2 L . When the gas is heated to $100.0^{\circ} \mathrm{C}$ the volume increases to 7.00 L . What is the new pressure?
5. A sample of O_{2} with an initial temperature of $50.0^{\circ} \mathrm{C}$ and a volume of 105 L is cooled to $-25^{\circ} \mathrm{C}$. The new pressure is 105.4 kPa and the new volume is 55.0 L . What was the initial pressure of the sample?
\qquad Date \qquad Class \qquad

SECTION 14.3 IDEAL GASES

1. A sample of argon gas is at a pressure of $1.24 \times 10^{4} \mathrm{kPa}$ and a temperature of $24^{\circ} \mathrm{C}$ in a rigid $25-\mathrm{L}$ tank. How many moles of argon does this tank contain?
2. A $35.0-\mathrm{L}$ tank contains 7.00 mol of compressed air. If the pressure inside the tank is 500.0 kPa , what is the temperature of the compressed gas?
3. How many grams of helium does a $25.0-\mathrm{L}$ balloon contain at 102.0 kPa and $24^{\circ} \mathrm{C}$?
4. Calculate the volume that 2.25 mol of $\mathrm{O}_{2}(\mathrm{~g})$ will occupy at STP.
5. A sample of water vapor occupies a volume of 10.5 L at $200^{\circ} \mathrm{C}$ and 100.0 kPa . What volume will the water vapor occupy when it is cooled to $27^{\circ} \mathrm{C}$ if the pressure remains constant?
6. What is the volume occupied by 0.355 mole of nitrogen gas at STP?
7. What is the volume of a container that holds 25.0 g of carbon dioxide gas at STP?

SECTION 14.4 GASES: MIXTURES AND MOVEMENTS

1. A gaseous mixture consisting of nitrogen, argon, and oxygen is in a $3.5-\mathrm{L}$ vessel at 25 C . Determine the number of moles of oxygen if the total pressure is 98.5 kPa and the partial pressures of nitrogen and argon are 22.0 kPa and 50.0 kPa , respectively.
2. Compare the effusion rates of O_{2} (molar mass, $32.0 \mathrm{~g} / \mathrm{mol}$) and N_{2} (molar mass, $28.0 \mathrm{~g} / \mathrm{mol}$).
